Quantum mechanics is a physical theory that describes the behavior of microscopic matter. According to quantum theory, a microscopic particle may be described as either a particle or a wave, called wave–particle duality. Many students in high school or college (BC level) find it difficult to imagine that microscopic particles have both particle and wave properties. This is mainly caused by the scale of the world they see since quantum mechanics deals with things that are too small, while the wave and particle phenomena at the microscopic scale are difficult to understand, measure, or verify in the real world. In this study, virtual reality technology was used to develop teaching modules on quantum mechanics, allowing learners to see the particles and wave phenomena of electrons and photons in the microscopic world through interactive operation in virtual experiments. A teaching experiment was conducted by recruiting 60 high school students as research subjects. The control group (30 students) used physics textbooks, and the experimental group (30 students) used the virtual teaching modules for learning quantum mechanics. The analysis results show that the experimental group’s learning effectiveness is higher than the control group. The questionnaire results show that students were satisfied with the learning experience using virtual teaching modules with high learning motivation and low cognitive load because virtual reality can visualize the abstract concepts of wave–particle duality and help them understand quantum mechanics.