Barium titanate is still the prototype of a piezoelectric crystalline material that has attracted many researchers and industrial partners to use. A modified citrate method was used to create barium titanate nanoparticles BaTi1−xZrxO3. The samples were crystallized in a single-phase tetragonal structure, as revealed using X-ray powder diffraction. The crystallite size decreases with increasing Zr concentration. Fourier-transform infrared spectra showed the main absorption bands of the samples BaTi1−xZrxO3. Field emission scanning electron microscopy micrographs illustrate that the doped sample BaTi0.9Zr0.1O3 is more porous and finer than the parent. For low Zr doping concentrations (x = 0.1), the ferroelectric properties of barium titanate are improved. The conduction mechanisms in the samples are small polaron hopping and correlated barrier hopping. The Zr/Ti ratio is a crucial parameter for tailoring the ferroelectric–paraelectric phase transition.