Methods to detect the position of the sun and orientate a solar panel to its position are used in order to optimize the power generated. Two possible approaches are using light depending resistor (LDR) sensors, or using a GPS and equations that model the geometry between the Earth and the Sun. The main objective of this work is the proposal of a prototype system to optimize the harvesting of solar energy on photovoltaic panels. In this chapter, a mobile robot powered by a solar panel orientated by a LDR matrix and a GPS device was developed. The LDRs were used as the representation of vectors normal to a surface, where its sum resulted in the most lighted point. The GPS, in turn, provided location, date and time data, which were used in the calculations of the Sun's azimuth and zenith, used to orientate the panel. The obtained results show that an orientated photovoltaic panel has a better performance when compared to a static panel. Possibilities and opportunities of research tend to grow for the next years with many possible works to be done in the future, both in mobile robotics and in other systems powered by photovoltaic panels.