2023
DOI: 10.1155/2023/6566375
|View full text |Cite
|
Sign up to set email alerts
|

Theory Analysis for the Convergence of Kernel-Regularized Online Binary Classification Learning Associated with RKBSs

Abstract: It is known that more and more mathematicians have paid their attention to the field of learning with a Banach space since Banach spaces may provide abundant inner-product structures. We give investigations on the convergence of a kernel-regularized online binary classification learning algorithm in the setting of reproducing kernel Banach spaces (RKBSs), design an online iteration algorithm with the subdifferential of the norm and the logistic loss, and provide an upper bound for the learning rate, which show… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 42 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?