Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Abstract: This paper for the first time presents a finite screw approach to type synthesis of three-degree-of-freedom (DOF) translational parallel mechanisms (TPMs). Firstly, the finite motions of a rigid body, a TPM and its limbs are described by finite screws. Secondly, given the standard form of a limb with the specified DOF, the analytical expressions of the finite screw attributed to the limb are derived using the properties of screw triangle product, resulting in a full set of the 3-, 4-and 5-DOF limbs that can readily be used for determining all the potential topological structures of TPMs. Finally, the assembly conditions for type synthesis of TPMs are proposed by taking into account the inclusive relationship between the finite motions of a TPM and those of its limbs. The merit of this approach lies in that the limb structures can be formulated in a justifiable manner that naturally ensures the full cycle finite motion pattern specified to the moving platform.