Mixtures of micelle-forming and lamella-forming amphiphiles in solution can form disk-shaped bilayers, sometimes referred to as bicelles. Using self-consistent field theory (SCFT), we investigate the structure and stability of these aggregates in a blend of two species of PS-PDMS diblock with PDMS homopolymer at 225 • C. We find that the center of each disk is mainly composed of lamellaforming diblocks, while its thicker rim is mostly formed of micelle-forming diblocks. However, this segregation is not perfect, and the concentration of micelle formers is of the order of 10% on the flat central surface of the bicelle. We also find that the addition of micelle former to the mixture of lamella former and homopolymer is necessary for disk-like bicelles to be stable. Specifically, the free energy density of the disk has a minimum as a function of the disk radius when both micelle-and lamella-forming diblocks are present, indicating that the bicelles have a preferred, finite radius. However, it decays monotonically when only lamella former is present, indicating that the bicelle structure is always unstable with respect to further aggregation in these systems.Finally, we identify a concentration range where the bicelle is predicted to have a lower free energy density than the simple cylindrical and lamellar aggregates, and so might be thermodynamically stable.PACS numbers: