With one of the highest intrinsic magnetic moments (10.6µ B /atom) among the heavy rareearth elements, dysprosium exhibits a rich magnetic phase diagram, including several modulated magnetic phases. Aided by the Ruderman-Kittel-Kasuya-Yosida interaction, the magnetic modulations propagate coherently over a long range. Neutron diffraction experiments were performed to determine the microscopic magnetic origin of the field induced phases in bulk Dy as a function of temperature, covering regions of the well-known ferromagnetic, helical antiferromagnetic, fan phases and several possible new phases suggested by previous studies. A short range ordered fan phase was identified as the intermediate state between ferromagnetism and long range ordered fan. In a field of 1 T applied along the a-axis, the temperature range of a coexisting helix/fan phase was determined. The magnetic phase diagram of Dy was thus refined to include the detailed magnetic origin and the associated phase boundaries. Based on the period of the magnetic modulation and the average magnetization, the evolution of the spin arrangement upon heating was derived quantitatively for the modulated magnetic phases.