This paper presents a novel framework for integrating artificial empathy into robot swarms to improve communication and cooperation. The proposed model uses fuzzy state vectors to represent the knowledge and environment of individual agents, accommodating uncertainties in the real world. By utilizing similarity measures, the model compares states, enabling empathetic reasoning for synchronized swarm behavior. The paper presents a practical application example that demonstrates the efficacy of the model in a robot swarm working toward a common goal. The evaluation methodology involves the open-source physical-based experimentation platform (OPEP), which emphasizes empirical validation in real-world scenarios. The paper proposes a transitional environment that enables automated and repeatable execution of experiments on a swarm of robots using physical devices.