“…The interest in non-Hermitian Hamiltonians was originally focused in ïï -symmetric Hamiltonians [23] as a generalization of quantum mechanics where the Hermiticity constraint could be removed while keeping a real spectra. Today, this has shifted to non-Hermitian Hamiltonians regarded as an effective description of, for example, open quantum systems [24,25], where the finite lifetime introduced by electronelectron or electron-phonon interactions [26][27][28], or disorder [29], is modeled through a non-Hermitian term, or in the physics of lasing [30][31][32][33][34]. An additional source of momentum in this field comes from the study of systems where the quantum mechanical description is used after mapping to a Schrödinger-like equation, as in systems with gain and loss (as found in optics and photonics [35][36][37][38]), surface Maxwell waves [39], and topoelectrical circuits [40,41].…”