Molecular electronics is envisioned as a promising candidate for the nanoelectronics of the future. More than a possible answer to the ultimate miniaturization problem in nanoelectronics, molecular electronics is foreseen as a possible and reasonable way to assemble a large numbers of nanoscale objects (molecules, nanoparticles, nanotubes and nanowires) to form new devices and circuit architectures. It is also an interesting approach to significantly reduce the fabrication costs, as well as the energetical costs of computation, compared to usual semiconductor technologies. Moreover, molecular electronics is a field with a large spectrum of investigations: from quantum objects for testing new paradigms, to hybrid molecular-silicon CMOS devices.