Hypocrellin A displays photoinduced antiviral activity, in particular against the human immunodeficiency virus (HIV), as does its counterpart, hypericin. Although hypocrellin A, like hypericin, executes an excitedstate intramolecular proton transfer, it differs from hypericin in two important ways. Unlike hypericin, hypocrellin A absolutely requires oxygen for its antiviral activity. Also, whereas we have previously demonstrated that hypericin functions as a light-induced proton source, we do not observe that hypocrellin A acidifies its surrounding medium in the presence of light. These results are discussed in the context of the ground-and excited-state photophysics of hypericin and its mechanisms of photoinduced virucidal activity. ABSTRACT: Hypocrellin A displays photoinduced antiviral activity, in particular against the human immunodeficiency virus (HIV), as does its counterpart, hypericin. Although hypocrellin A, like hypericin, executes an excited-state intramolecular proton transfer, it differs from hypericin in two important ways. Unlike hypericin, hypocrellin A absolutely requires oxygen for its antiviral activity. Also, whereas we have previously demonstrated that hypericin functions as a light-induced proton source, we do not observe that hypocrellin A acidifies its surrounding medium in the presence of light. These results are discussed in the context of the ground-and excited-state photophysics of hypericin and its mechanisms of photoinduced virucidal activity.