MicroRNA-30a-5p (miR-30a-5p), which functions as a tumor suppressor, has been reported to be downregulated in colorectal cancer (CRC) tissues and to be associated with cancer invasion. However, the detailed regulatory mechanism of curcumol in the malignant progression of CRC remains unknown. MTT, Transwell, scratch, western blotting and reverse transcription-quantitative PCR assays were performed to examine how curcumol inhibited CRC cell viability, invasion and migration, and to detect the role of miR-30a-5p and curcumol in the invasion and Hippo signaling pathways of CRC cells. The present study revealed that miR-30a-5p expression was downregulated in human CRC tissues and cells. The results demonstrated that miR-30a-5p downregulation was accompanied by the inactivation of the Hippo signaling pathway, which was demonstrated to promote CRC cell viability, invasion and migration. Curcumol treatment was identified to increase miR-30a-5p expression and to activate the Hippo signaling pathway, which in turn inhibited the invasion and migration of CRC cells. Overexpression of miR-30a-5p enhanced the effects of curcumol on cell invasion and migration, and the Hippo signaling pathway in CRC cells. Furthermore, downregulation of miR-30a-5p reversed the effects of curcumol on cell invasion and migration, and the Hippo signaling pathway in CRC cells. These findings identified novel signaling pathways associated with miR-30a-5p and revealed the effects of curcumol on miR-30a-5p expression. Therefore, curcumol may serve as a potential therapeutic strategy to delay CRC progression.