Rigosertib is a small molecule in preclinical development that, due to its characteristics as a dual PLK1 and PI3K inhibitor, is particularly effective in counteracting the advance of different types of tumors. In this work, we evaluated the efficacy of Rigosertib and the expression of p53 in five different human tumor cell lines in vitro, A549 (lung adenocarcinoma), MCF-7 and MDA-MB231 (breast cancer cells), RPMI 8226 (multiple myeloma), and U87-MG (glioblastoma). We demonstrated that in all cell lines, the effect was dose- and time-dependent, but A549 cells were the most sensible to the treatment while higher concentrations were required for the most resistant cell line U87-MG. Moreover, the highest and lowest p53 levels have been observed, respectively, in A459 and U87-MG cells. The alterations in the cell cycle and in cell-cycle-related proteins were observed in A549 at lower concentrations than U87-MG. In conclusion, with this article we have demonstrated that Rigosertib has different efficacy depending on the cell line considered and that it could be a potential antineoplastic agent against lung cancer in humans.