Recent studies in HER-2/neu-targeted immunotherapy demonstrated that polymorphonuclear neutrophils (PMN) mediated Ab-dependent cellular cytotoxicity against HER-2/neu-positive breast cancer cell lines. However, the mechanism of cell death remained unclear. We used several assays to analyze the induction of apoptosis in the breast cancer cell line SK-BR-3 via PMN-dependent Ab-dependent cellular cytotoxicity. In the presence of the HER-2/neu Ab 520C9 and PMN from healthy donors, apoptosis occurred as detected by annexin V binding and disappearance of euploid SK-BR-3 nuclei, which can be differentiated from PMN nuclei by their increased DNA contents. Apoptosis induction was observed with E:T cell ratios as low as 10:1. Laser scanning fluorescence microscopy of TUNEL tumor cells or staining for cleaved cytokeratin-18 further confirmed apoptosis of the SK-BR-3 breast cancer cells. Killing via 520C9 was dependent on the interaction with FcR on PMN, because 1) F(ab′)2 fragments of 520C9 mediated no cytotoxicity, 2) target cell death was influenced by a biallelic polymorphism of FcγRIIa on the effector cells, and 3) a bispecific Ab against HER-2/neu and the IgA receptor (FcαRI) expressed on effector cells significantly induced apoptosis. Thus, PMN induce Ab-dependent apoptosis against human breast cancer cells targeted with HER-2/neu-directed mAbs or FcR directed bispecific Abs.