Heralded as the next miracle material, graphene oxide (GO) has the potential to be used in a variety of next generation devices. However, there are still gaps in the fundamental knowledge on this material and even now, a canonical model of GO has not been developed. The two aims of this thesis are to support the development of the canonical model by studying the O 1s 1/2 spectra of GO and to develop the use of reduced GO for electronic device applications. Here, the identities of peaks in the O 1s 1/2 spectrum were identified by chemical and mathematical analysis and the fabrication processes were made environmentally friendly and industrially scalable by the use of ascorbic acid for low temperature reduction of GO and ultrasonic spray coating for large area deposition respectively in transparent conducting electrodes (TCE). Further to this, the conductive character of reduced GO was also utilized in a bilayer device design with phthalocyanines for a NO 2 sensing application. The binding energy of O 1s 1/2 electrons in the carbonyl, carboxyl, hydroxyl and epoxy functional groups were found to be 530.9, 532.3, 533.1 & 534.4 eV respectively. With this information, metastability in GO was understood to result in the preferential formation of the carboxyl functional group, which cause vacancies in the graphene flake and are difficult to remove, during the thermal reduction of GO. This was estimated to occur between the temperatures of 543 & 561 K and * 1