The Simons Observatory (SO) is a ground-based experiment aiming to enhance our understanding of the early universe, by making detailed measurements of the cosmic microwave background (CMB), across multiple spectral bands ranging from 30 to 280 GHz. The baseline project in the Atacama Desert in Chile, comprises four small-aperture telescopes (SATs) and one large-aperture telescope (LAT), housing a total of 60,000 detectors with angular resolutions ranging from 1-90 arc-minute. The low frequency detector arrays to be deployed in the LAT, feature anti-reflection (AR) coated lenslet-coupled sinuous antennas with a diplexing filter for the 30 and 40 GHz bands centers. Superconducting niobium (Nb) microstrip lines carry the signal for each polarization and band to titanium (Ti) load resistors which in turn heat up palladium (Pd) thermal ballasts and are sensed with transition edge sensors (TESs). The TESs are constructed from aluminum manganese (AlMn) and operate in their superconducting transitions (T c ) with a base temperature of 100mK. The sensors are read out by cryogenic microwave resonators using RF superconducting quantum interference devices (SQUIDs) in the microwave multiplexing (uMux) scheme. In these proceedings, we report on the current status of design, fabrication and characterization of the Simons Observatory low frequency detectors fabricated by UC Berekeley. The fabricated detector arrays have an average bolometer yield of 94% and desirable radio frequency (RF) characteristics.