The optical effects of liquid crystals can be realized when the mesogens are dispersed in a supporting and stabilizing polymer phase. Thermoplastics were chosen for their structural reversibility and ease of fabrication of polymer-dispersed liquid crystals (PDLCs) from solution via solvent-induced phase separation (SIPS). The component match and tuning in PDLCs was achieved in a common solvent through predictions of solubility parameters. The PDLCs were first prepared using SIPS and were then exposed to thermal treatments on a hot stage polarizing microscope or in a differential scanning calorimeter. At elevated temperatures the polymer and mesogen may become miscible, while upon cooling thermally induced phase separation (TIPS) should occur, preferably above the isotropic-nematic transition temperature. The nematic phase existed within disperse phase droplets that were stabilized and supported by the matrix polymer. The temperature range of the nematic phase was extended in the PDLC configuration. The droplet size was important for liquid crystalline optical behaviour. Polymer-mesogen interactions, identified through solubility parameters, were important in ensuring sufficient but not coarse phase separation.