An optical system for fast IR radiometry designed for investigations of thin film thermal properties and pulsed laser melting was analyzed in this work. A methodology for determination of the view factor from calibration measurements was developed. The view factor (0.0255) of the optical system containing two paraboloid mirrors was determined experimentally from calibration measurements on pure metals and metallic alloys. The knowledge of the view factor was then applied to normal emissivity investigations at IR wavelengths. The emissivity of tungsten films prepared by magnetron sputtering was determined for different deposition conditions, varying between 0.036 and 0.071. Liquid phase emissivities of Cu, Mo, Ni, Si, Sn, Ti, and steel were also determined and were found to be higher than solid-state emissivities as predicted from the literature. A knowledge of the liquid-state emissivity of silicon enabled recalculation of the IR signal evolution to the temperature evolution, during and after a nanosecond laser pulse. This was not possible by use of the usual calibration because of silicon's semi-transparent behavior in the IR range (1-10 µm) in the solidstate phase.