A method for determining the in-plane thermal diffusivity of planar samples was constructed. The time-dependent temperature field of the sample heated at one edge was measured with an infrared camera. The temperature fields were averaged for different times over a narrow strip around the center line of the sample, and the temperature profiles for varying time were fitted by a solution to a corresponding one-dimensional heat equation. Heat losses by convective and radiative heat transfer were both included in the model. Two fitting parameters, the thermal diffusivity and the effective heat-loss term, were obtained from time-dependent temperature data by optimization. The ratio of these two parameters was also extracted from the steadystate temperature profile. The method was found to give good and consistent results when tested on copper and aluminum samples.