Carbon foams (CFms) exhibit excellent physical properties, including good thermal conductivity, low density, high porosity and specific surface area, good vibration damping and shock absorption properties, and low thermal expansion coefficients. These properties are attractive in various applications such as thermal and electrical transfer devices, electrochemical supercapacitors, catalyst supports, gas adsorbents, filtration systems, and electromagnetic shielding. However, compared to metals and polymers, CFms do not exhibit good mechanical or thermal properties because of their porous structure; these shortcomings have limited the application of CFms in various fields [1][2][3][4].Researchers have sought to improve the mechanical and thermal properties of CFms through the addition of carbon nanofibers, carbon nanotubes, graphite and metal plating [5,6]. CFms/copper composites were recently studied by Johnson et al. [7], who examined the thermal conductivity of wood-derived graphite and copper-graphite composites produced via electrodeposition. The thermal conductivity of the biomorphic graphite/copper composite was 10 times greater than that of biomorphic graphite, with the graphite/copper composites exhibiting a thermal conductivity ranging from 20 to 21 W/mK [7]. Zhai et al. [8] studied the effects of vacuum and ultrasonic co-assisted electroless copper plating on CFms and noted increased conductivity ranging from 700 to 1885.8 S/cm, and increased compressive strength ranging from 0.70 to 1.66 MPa with increasing copper content.Cu exhibits high thermal and electrical conductivities, in the range of 350-400 W/mK and 59.17-59.59 × 10 6 Ω -1 m -1 , respectively; and it can be adhesively bonded with carbon matrices such as carbon nanofoams, mesoporous carbon templates and nanotube/nanofiber assemblies through electrodeposition, electroless deposition, coating, and doping. Numerous researchers have reported that, when used as battery electrodes, metal-bonded carbon matrices exhibit high electrical capacity and increased oxidative stability compared to nontreated graphite foams [5,[9][10][11][12][13][14][15]. However, preparing CFms with copper presents various problems. The coating of metal to the inner surfaces of porous materials that have small and deep pores using electrodeposition, metal layer joining, and electroless plating methods is difficult. Methods such as vacuum and ultrasonic mechanical processes are needed in addition, to uniformly coat metals onto the inner surfaces of CFms [16][17][18][19][20]. Alternatively, CFms have been uniformly embedded with copper via CuSO 4 solutions without the use of any mechanical process [21].In this study, we investigate economical and convenient methods of preparing coppernanoparticle-embedded CFms (Cu-CFms) using CuSO 4 solutions with different concentrations. The thermal and mechanical properties of the resulting Cu-CFms were investigated along with changes in the density and nanoparticulate size of the Cu.Isotropic pitch (IP) (pyrolyzed fuel oil; GS Caltex, Seoul...