Comprehensive analysis on the modal characteristics of V-shaped electrothermal microactuators is presented in this paper for the first time. Considering the unique geometric characteristics of the V-shaped beam, that is, two inclined beams supporting a movable shuttle, both the lateral and longitudinal deflections are taken into account in the modal analysis. Boundary and continuity conditions are employed to obtain the frequency equation. Natural frequencies are then obtained by solving the frequency equation. Mode shapes corresponding to their natural frequencies are also calculated analytically. e theoretical modal analysis is verified with the finite element analysis using ANSYS software. Based on the model analysis, this paper further investigates the relationship between natural frequencies and the volume scaling of the V-shaped beam. Finally, comprehensive parametric studies in terms of material properties and structural dimensions are conducted to provide insights and guidance in designing the V-shaped beam electrothermal microactuators.