Fine-pitch ball grid arrays (BGAs) and underfills have been used in benign office environments and wireless applications for a number of years, however their reliability in harsh environments is not well understood. In this work, the design guidelines development effort for deployment of fine-pitch ball-grid array packages in the harsh environments have been presented. Guidelines are targeted toward government contractors, OEMs, and third party contract manufacturers who intend to select part architectures and board designs based on specified mission requirements. The guidelines are intended as an aid for understanding the sensitivity of component reliability to geometry, package architecture, material properties and board attributes in different thermal environments in order to quantitatively evaluate the impact of these parameters on the component reliability. The intent is to develop a tool for doing tradeoffs between geometry, materials and quantitatively evaluating the impact on reliability.
Sensitivity relations for geometry, materials, and architectures based on statistical models and failure mechanics based closed form models have been developed. Convergence between statistical model sensitivities and failure mechanics based sensitivities has been demonstrated. Predictions of sensitivities have been validated against experimental test data.Index Terms-Ball grid array (BGA), design guidelines, solder joint fatigue, statistical model, thermal reliability prediction.