Complex metal hydrides have been synthesized for hydrogen storage through a new synthetic technique utilizing high hydrogen overpressure at elevated temperatures (molten state processing). This synthesis technique holds the potential of fusing different complex hydrides at elevated temperatures and pressures to form new species with enhanced hydrogen storage properties. Formation of these compounds is driven by thermodynamic and kinetic considerations. We report on investigations of the thermodynamics. Novel synthetic complexes were formed, structurally characterized, and their hydrogen desorption properties investigated. The effectiveness of the molten state process is compared with mechanicosynthetic ball milling.