“…At higher temperatures (600 and 700 • C), increased production of benzene, toluene, ethylbenzene, and α-methyl styrene and decreased production of styrene have been observed, probably due to the predominance of intramolecular hydrogen transfer reactions at this range of temperatures [18]. Concerning termination, some authors propose a mechanism involving the recombination [9,11], or the disproportionation reaction [19] between two radicals; while others suggest the occurrence of depropagation until the end of the polymer molecule [13].Published studies related to the thermal degradation and pyrolysis of polystyrene [13,[20][21][22][23][24][25] have been performed in a variety of reaction systems and sets of conditions, including reaction temperatures, reaction times, and molecular weights of the polystyrene sample, resulting in a broad collection of reaction yields and product distribution. The available reported experimental data fall into three types: chemical nature of the products (that help to elucidate the degradation mechanism), rate of evolution of products, and the change of molecular weight in the residue.Jellinek [22] reported experiments carried out in long open-to-air tubes containing 0.1 to 0.5 g of material, to show the influence of oxygen on the thermal degradation of polystyrene.…”