Structures composed of functionally graded materials (FGM) can satisfy many rigorous requisitions in engineering application. In this paper, the nonlinear dynamics of a simply supported FGM conical panel with different forms of initial imperfections are investigated. The conical panel is subjected to the simple harmonic excitation along the radial direction and the parametric excitation in the meridian direction. The small initial geometric imperfection of the conical panel is expressed by the form of the Cosine functions. According to a power-law distribution, the effective material properties are assumed to be graded along the thickness direction. Based on the first-order shear deformation theory and von Karman type nonlinear geometric relationship, the nonlinear equations of motion are established by using the Hamilton principle. The nonlinear partial differential governing equations are truncated by Galerkin method to obtain the ordinary differential equations along the radial displacement. The effects of imperfection types, half-wave numbers of the imperfection, amplitudes of the imperfection, and damping on the dynamic behaviors are studied by numerical simulation. Maximum Lyapunov exponents, bifurcation diagrams, time histories, phase portraits, and Poincare maps are obtained to show the dynamic responses of the system.