Experiments with heating and cooling cycles in undrained constant total stress conditions in triaxial apparatus are presented. Heating induces a large pore-water pressure increase, which eventually leads to a large irreversible strain and possible mechanical failure. Subsequent cooling produces a drop in water pressure. In one test the drop during cooling was more than two times higher than the previous increase during heating, reaching values of up to 2.30 MPa. An analysis of these findings in terms of a thermoplastic model is presented. The interpretation of these tests relies heavily on the kind of stress-partitioning hypothesis that is used. It was found that the described phenomena can be quantitatively dealt with using the classical effective stress principle, if the shear strength and consolidation are described in terms of temperature-dependent plastic yield limit.Des expkriences avec des cycles de chauffage et de refroidissement produits dans l'appareil triaxial dans des conditions non drainkes en contrainte totale constante sont presentees. Le chauffage induit une augmentation importante de la pression interstitielle qui conduit kventuellement a une grande deformation irrkversible et possiblement a une rupture mkcanique. Le refroidissement subskquent produit une chute dans la pression interstitielle. Dans un essai, la chute durant le refroidissement ktait plus de deux fois plus importante que l'accroissement anterieur durant le chauffage, atteignant des valeurs jusqu'a 2,30 MPa. L'on prksente une analyse de ces rksultats en fonction d'un modkle thermoplastique. L'interpretation de ces essais dkpend fortement de l'hypothkse de partition de contrainte utilisee. L'on a trouvk que, si la resistance au cisaillement et la consolidation sont dkcrites en fonction de la limite de deformation plastique dkpendante de la tempkrature, les phenomknes decrits peuvent &tre traitks quantitativement en utilisant le principe des contraintes effectives classique.
IntroductionThis paper deals with cycles of heating and cooling of clay in undrained conditions. It is a continuation of previous work which focused on the response of clay mass to monotonic heating. Constant total stress undrained heatingcooling tests on saturated clays published previously are analysed. This sort of cyclic testing simulates thermomechanical behavior of clay around a heat source like a nuclearwaste repository. Nuclear waste has a decaying heat output. This leads to an initial increase of temperature in the soil mass after installation, followed by its gradual decrease (see,