Metal matrix composites (MMCs) have been regarded as one of the most principal classifications in composite materials. The thermal characterization of hybrid MMCs has been increasingly important in a wide range of applications. The coefficient of thermal expansion is one of the most important properties of MMCs. Since nearly all MMCs are used in various temperature ranges, measurement of coefficient of thermal expansion (CTE) as a function of temperature is necessary in order to know the behavior of the material. In this research paper, the evaluation of thermal expansivity has been accomplished for Al 6061, silicon carbide (SiC) and Graphite (Gr) hybrid MMCs from room temperature to 300 • C. Aluminum (Al)-based composites reinforced with SiC and Gr particles have been prepared by stir casting technique. The thermal expansivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated. The results have indicated that the thermal expansivity of the different compositions of hybrid MMCs decreases by the addition of Gr with SiC and Al 6061. Few empirical models have been validated for the evaluation of thermal expansivity of composites. Using the experimental values namely modulus of elasticity, Poisson's ratio and thermal expansivity, computational investigation has been carried out to evaluate the thermal parameters namely thermal displacement, thermal strain and thermal stress.