1997
DOI: 10.1142/s0218348x97000097
|View full text |Cite
|
Sign up to set email alerts
|

Thermal Fluctuations in Systems with Continuous Symmetry

Abstract: We investigate relaxation and thermal fluctuations in systems with continuous symmetry in arbitrary spatial dimensions. For the scalar order parameter ζ(r, t) with r∈ℛd, the deterministic relaxation is caused by hydrodynamic modes η∂ζ(r, t)/∂t= K∇2ζ(r, t). For a finite volume V, we expand the scalar field in a discrete Fourier series and then we study the behavior in the limit V→∞. We find that the second moment is well defined for dimensions d≥3, while it diverges for d=1, 2. Furthermore, we show that for d&l… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 1 publication
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?