In this paper, the thermal instability of rotating convection in a bidispersive porous layer is analyzed. The linear stability analysis is employed to examine the stability of the system. The neutral curves for different values of the physical parameters are shown graphically. The critical Rayleigh number is evaluated for appropriate values of the other governing parameters. Among the obtained results, we find: the Taylor number has a stabilizing effect on the onset of convection; the Soret number does not show any effect on oscillatory convection, as the oscillatory Rayleigh number is independent of the Soret number; there exists a threshold, Rc* ∈ (0.45, 0.46), for the solute Rayleigh number, such that, if RC > Rc*, then the convection arises via an oscillatory mode; and the oscillatory convection sets in and as soon as the value of the Soret number reaches a critical value, (∈(0.6, 0.7)), and the convection arises via stationary convection.