This report summarizes significant technical findings trom the LP-FP-2 Experiment sponsored by the Organization of Economic Cooperation and Development (OECD). It was the second, and final, fission product experiment conducted in the Loss-of-Fluid Test (LOFT) facility at the Idaho National Engineering Laboratory. The overall technical objective of the test was to contribute to the understanding of fuel rod behavior, hydrogen generation, and fission product release, transport, and deposition during a V-sequence accident scenario that resulted in severe core damage. An 11 by 11 test bundle, comprised of 100 prepressurized fuel rods, 11 control rods, and 10 instrumented guide tubes, was surrounded by an insulating shroud and contained in a specially designed central fuel module, that was inserted into the LOFT reactor. The simulated transient was a V-sequence loss-of-coolant accident scenario featuring a pipe break in the low pressure injection system line attached to the hot leg of the LOFT broken loop piping. The transient was terminated by reflood of the reactor vessel when the outer wall shroud temperature reached 1517 K. With sustained fission power and heat from oxidation and metal-water reactions, elevated temperatures resulted in zircaloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. A description and evaluation of the major phenomena, based upon the response of on line instrumentation, analysis of fission product data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented.