The problem of thermo-elastic stress analysis in multi-layered nonhomogeneous beams is considered. The proposed analytical approach based on the multi-layered beam theory permits to take into account an arbitrary distribution of the Young's modulus, of the thermal-expansion coefficient, and of the temperature variation along the beam depth. The effect of shear deformability of the interfaces is also carefully analyzed. Useful closed-form solutions for the normal stresses in the layers and for the interface tangential stresses are provided in the case of nonhomogeneous bi-and tri-layered beams. The obtained results show the effectiveness of using functionally graded materials to relieve stress-concentrations due to the thermo-elastic mismatch typical of laminated beams with homogeneous layers.