2022
DOI: 10.1101/2022.08.18.504401
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Thermal modulation of skin friction at the fingertip

Abstract: Preliminary human studies show that reduced skin temperature minimises the risk of mechanically-induced skin damage. However, the mechanisms by which cooling enhances skin tolerance to pressure and shear remain poorly understood. We hypothesized that skin cooling below thermo-neutral conditions will decrease friction at the skin-material interface. To test our hypothesis, we measured the friction coefficient of a thermally pre-conditioned index finger sliding at a normal load (5N) across a plate maintained at … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?