Molecules drift along temperature gradients, an effect called thermophoresis, the Soret effect, or thermodiffusion. In liquids, its theoretical foundation is the subject of a long-standing debate. By using an all-optical microfluidic fluorescence method, we present experimental results for DNA and polystyrene beads over a large range of particle sizes, salt concentrations, and temperatures. The data support a unifying theory based on solvation entropy. Stated in simple terms, the Soret coefficient is given by the negative solvation entropy, divided by kT. The theory predicts the thermodiffusion of polystyrene beads and DNA without any free parameters. We assume a local thermodynamic equilibrium of the solvent molecules around the molecule. This assumption is fulfilled for moderate temperature gradients below a fluctuation criterion. For both DNA and polystyrene beads, thermophoretic motion changes sign at lower temperatures. This thermophilicity toward lower temperatures is attributed to an increasing positive entropy of hydration, whereas the generally dominating thermophobicity is explained by the negative entropy of ionic shielding. The understanding of thermodiffusion sets the stage for detailed probing of solvation properties of colloids and biomolecules. For example, we successfully determine the effective charge of DNA and beads over a size range that is not accessible with electrophoresis.DNA ͉ fluorescence ͉ microfluidic ͉ Soret ͉ thermodiffusion T hermodiffusion has been known for a long time (1), but its theoretical explanation for molecules in liquids is still under debate. The search for a theoretical understanding is motivated by the fact that thermodiffusion in water might lead to powerful all-optical screening methods for biomolecules and colloids. Equally well, thermodiffusion handles and moves molecules alloptically and therefore can complement well established methods: for example, electrophoresis or optical tweezers. For the latter, forces of optical tweezers scale with particle volume and limit this method to particles of only Ͼ500 nm. Electrophoresis does not suffer from force limitations but is difficult to miniaturize because of electrochemical reactions at the electrodes.On the other hand, thermodiffusion allows the microscale manipulation of small particles and molecules. For example, 1,000-bp DNA can be patterned arbitrarily in bulk water (Fig. 1). The temperature pattern ''DNA,'' heated by 2 K, was written into a water film with an infrared laser scanning microscope. The concentration of 1,000-bp DNA was imaged by using a fluorescent DNA tag. In an overall cooled chamber at 3°C, DNA accumulates toward the heated letters ''DNA'' (negative Soret effect), whereas at room temperature DNA is thermophobic (positive Soret effect) as seen by the dark letters.In the past, the apparent complexity of thermodiffusion prevented a full theoretical description. As seen for DNA in Fig. 1, molecules characteristically deplete from regions with an increased temperature, but they can also show the inver...