The combined relativistic quantum defect approximation and relativistic many-body perturbation theory with the zeroth order optimized approximation are applied to studying the Li-like calcium oscillator strengths of radiative transitions from ground state to the Rydberg states. New element in our scheme is an implementation of optimized relativistic quantum defect approximation to an energy approach frames. Comparison of calculated oscillator strengths with available theoretical and experimental (compillated) data is performed and a number of oscillator strengths are presented firstly.