Abstract:The influence of hard coating on vibration characteristics of fiber-reinforced composite thin shell (FCTS) is investigated theoretically. The theoretical model of the hard coating FCTS is firstly established by using the classical laminated shell theory, Love's first approximation theory, Rayleigh-Ritz method, and strain energy method. The values of the natural frequency, modal shape, resonant response, and modal loss factor of the hard-coating shell are obtained, and the corresponding analysis procedure is also summarized. The verification of such a theoretical method is performed by a case study, and the analysis results show a good agreement between the presented method and finite element method. The main findings from this study include: (I) The natural frequencies of FCTS with hard coating firstly decrease and then increase with the increase of elastic modulus and loss factor of hard coating, and they also show an increasing tendency when the thickness of hard coating rises; (II) Increasing the values of elastic modulus, loss factor, and thickness of hard coating can help to reduce the vibration response of FCTS. However, with the increase of modal order of the composite shell, the reduction rates of resonant responses and the increased levels of modal loss factor will decrease.