The purpose of this study was to explore the drying kinetics, effective moisture diffusivity, activation energy, color variation, and the thermal degradation properties of anthocyanins of blood-flesh peach under hot air drying for the first time. The results showed that the hot air-drying process of blood-flesh peach belongs to reduced-speed drying. The Page model could accurately predict the change of moisture ratio of blood-flesh peach. The effective moisture diffusivity during hot air drying of blood-flesh peach was in the range between 1.62 × 10−10 and 2.84 × 10−10 m2/s, and the activation energy was 25.90 kJ/mol. Fresh samples had the highest content (44.61 ± 4.76 mg/100 g) of total monomeric anthocyanins, and it decreased with the increase of drying temperature. Cyanidin-3-O-glucoside and delphinidin-3-O-galactoside were the main anthocyanins of blood-flesh peach as identified and quantified by UPLC-QqQ-MS. Interestingly, during the drying process, the content of cyanidin-3-O-glucoside increased at the beginning, and then decreased. However, the content of delphinidin-3-O-galactoside kept decreasing during the whole drying process. Considering the drying efficiency, fruit color and quality, 70 °C would be a suitable temperature for drying blood-flesh peach. This research will provide beneficial information for understanding the anthocyanin degradation of blood-flesh peach during drying, and guide the production of high-quality dried products.