Phase change materials can be the most suitable way to enhance the thermal performance of a heat exchanger, and it is one of the important parameters for various developments in renewable energy and engineering applications for a sustainable future. At the time of phase change, the phase change material can store energy and release that stored energy in the form of heat. It is an eminent candidate for different engineering sectors, including thermal, electronics, civil, and textile. In this research, we used lauric acid as a phase change material and copper oxide, aluminium oxide as nanoparticles experimentally. The characterisation tests such as Thermogravimetric analysis, Fourier Transform Infrared Spectroscopy, Ultraviolet-visible, Thermal Conductivity, X-Ray Diffraction, Field Emission Scanning Election Microscope were carried out on the phase change materials and nano phase change materials. The phase change materials are tested individually to analyse the heat transfer rate of the heat exchanger for a specific period of time at three different inlet temperatures. The thermal conductivity of the phase change material is improved by the addition of copper oxide and aluminium oxide nanoparticles to it. By adding Aluminium oxide and copper oxide nanoparticles to the lauric acid, the heat storage capacity is increased by 16.52%, 38.89% at 60°C, 17.75%, 41.33% at 70°C, and 22.67%, 46.17% at 80°C respectively. Copper oxide is the most suitable nanomaterial to improve the thermal conductivity of low thermal conductive phase change materials, since it has properties like high thermal conductivity, low thermal interface resistance, and high aspect ratio. The heat energy stored in phase change materials is increased due to the addition of nanoparticles. In future, a suitable optimization technique can be employed to predict the optimum nanoparticle weight percentage to get improved thermal performance.