With the recognition that traditional phthalate plasticizers readily migrate from a polymer matrix into which they have been incorporated, have become widespread environmental pollutants and pose risks to human health, the development of new, effective, nontoxic, nonmigrating plasticizers has gained urgency. A focus has been the generation of plasticizers from renewable, inexpensive, nontoxic biobased precursors. Many small molecule plasticizers have been prepared from readily-available bioprecursors. However, the most promising are branched oligomeric materials. Fully compatible oligomeric plasticizers do not migrate from a polymer matrix. Highly branched materials are effective in increasing free volume and display good plasticizing impact. Using new technology that permits the generation of hyperbranched poly(ester) without gelation and with control of molecular weight and endgroup identity, oligomeric materials have been prepared from the nontoxic biomonomers, glycerol and adipic acid. The monomers are readily available at modest cost. The oligomers may be obtained in a simple one-step process and function as very effective plasticizers for polymeric materials.