A key part of optimising thermoelectric materials is understanding the electronic scattering mechanism. For half-Heusler thermoelectrics, the dominant mechanisms are acoustic phonon scattering in pure systems and alloy scattering in highly alloyed systems. In this report, the significance of the residual resistivity ρ0 is highlighted. Large ρ0 values can lead to misidentification of the dominant scattering mechanism when only high-temperature ρ(T) data is available. A straightforward approach to analyse ρ(T) is proposed and applied to a range of HH systems. This reveals large levels of structural disorder in XIVNiSn, whilst XVFeSb has the strongest coupling with acoustic phonons. The electronic scattering mechanism depends sensitively on composition, with acoustic (∝T1.5), metallic (∝T1) and alloy (∝T0.5) scattering observed within the main families of half-Heusler compounds. With the aid of velocity of sound, band mass and carrier concentration data, the deformation potential can be obtained, enabling quantification of the interaction between phonons and carriers, from fits to resistivity data. This work provides a route for the analysis of experimental ρ(T) data that can be applied to a range of thermoelectric materials.