In order to improve the productivity of shale gas, in situ heating technology has been applied generally. However, this technology is limited by unknown properties in heated matrix, e.g., permeability. Therefore, a method for measuring the permeability of heated shale matrix particles was designed, and transport tests were conducted on the shale matrix at heating temperatures of 100~600 degrees centigrade. Through fitting the experimental data with numerical simulation results, pore structures and permeabilities at different heating temperature conditions were obtained and the corresponding transport properties were determined. The porosity and pore radius were positively correlated with the heating temperature, while the tortuosity was negatively correlated with the temperature of the heat treatment. Despite the weakening effect of Knudsen diffusion transport, slippage transport played a critical role in the transport function of the heated shale matrix, and the domination became stronger at higher heating temperatures. The study of gas transport in heated shale matrix provides a guarantee for the effective combination of in situ heating technology.