We study the quantumness of gravitational cat states in correlated dephasing channels. Our focus is on exploring how classical correlations between successive actions of a dephasing channel influence the decoherence of two gravitational cats (two qubits) at a thermal regime. The results show that the quantum coherence, local quantum Fisher information, and Bell non-locality can be significantly enhanced by augmenting classical correlations throughout the entire duration when the two qubits pass the channel. However, the gravitational interaction and energy gap between states exhibit intricate impacts on the quantum characteristics of gravitational cats. New features are reported that can be significant for both gravitational physics and quantum information processing.