Abstract.A hypothesis is advanced that dynamic recrystallization of Earth materials undergoing solid state flow may represent a balance between grain size reduction and grain growth processes occurring directly in the boundary between the dislocation and diffusion creep fields. Accordingly, the recrystallized grain size (D) and flow stress (o) at steady state will be related by the equation delineating the field boundary, which in general is temperature dependent. Creep experiments on a metallic rock analogue, Magnox, yielded
D--101-12exp[29.3/RT]o -1-23 and demonstrated that D (•tm)decreases with increasing o (MPa) and increasing temperature (T) in a manner which is in agreement with the field botlndary hypothesis. If the model applies to rocks, the widely accepted idea that dynamic recrystallization can lead to major rheological weakening in the Earth may not hold. Moreover, empirical D-o relations, used in paleo-piezometry, will need to be modified to account for temperature effects.