Star-shaped poly(isobornyl acrylate) (PiBA) was prepared by atom transfer radical polymerization (ATRP) using multifunctional initiators. The optimal ATRP-conditions were determined to minimize star-star coupling and to preserve high end group functionality (>90%).Star-shaped PiBA with narrow polydispersity index was synthesized with 4, 6 and 12 arms and of varying molecular weight (10000 to 100000 g·mol -1 ) using 4 equivalents of a Cu(I)Br/PMDETA catalyst system in acetone. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis, NMR spectroscopy and size exclusion chromatography (SEC) confirmed their controlled synthesis. The bromine-end group of each arm was then transformed to a reactive end group by a nucleophilic substitution with methacrylic acid or cinnamic acid (conversion >90%).These reactive star polymers were used to prepare PiBA-nanoparticles by intramolecular polymerization of the end groups. The successful preparation of this new type of organic nanoparticles on a multi-gram scale was proven by NMR spectroscopy and SEC. Subsequently, they have been used as additives for linear, rubbery poly(n-butyl acrylate). Rheology measurements indicated that the viscoelastic properties of the resulting materials can be finetuned by changing the amount of incorporated nanoparticles (1-20 wt%), as a result of the entanglements between the nanoparticles and the linear polymers.