The quantification of key microstructural parameters as a function of aging or creep exposure time is commonplace in the assessment of 9Cr Creep Strength Enhanced Ferritic (CSEF) power-plant steels. In these studies, the sample is either assumed chemically homogenous at the micro-scale or that a material average will be achieved by collecting enough images at random locations. In this paper, the micro-scale chemical homogeneity of two ex-service boiler components, a pipe and a forging, are quantitatively assessed using high sensitivity chemical mapping from µ-XRF. The compositional variation was as expected most pronounced in the larger elements Mo and Nb, where a > 20 pct difference in composition was present between positively and negatively segregated areas. The effect of this micro-segregation on local variations in Laves phase particle characteristics was investigated using SEM images. This showed a factor of two difference in the number of particles and the area coverage between positively and negatively Mo-segregated regions. This result was consistent with the thermodynamic equilibrium predictions of the phase content based on the observed level of segregation.