Modern day industries are highly focused on the development of bio-inspired hybrid natural fiber composites for lightweight biosensor chips, automobile, and microfluidic applications. In the present research, the mechanical properties and morphological characteristics of alkaline (NaOH)-treated hemp, flax, noil hemp, and noil flax fiber-reinforced ecopoxy biocomposites were investigated. The samples were fabricated by employing the hand layup technique followed by the compression molding process. A total of two sets of composites with various weight fractions were fabricated. The samples were tested for mechanical properties such as flexural strength, interlaminar shear strength, moisture absorption, and contact angle measurement. The treated fibers were analyzed by using an optical microscope and Fourier transform infrared spectrometer (FTIR). The morphological characteristics, such as porosity and fracture mechanisms, were investigated by using scanning electron microscopy and SEM−EDX spectroscopy. The results revealed that the flexural properties of hybrid composites vary from 22.62 MPa to 30.04 MPa for hemp and flax fibers and 21.86 MPa to 24.70 MPa for noil fibers, whereas in individual fiber composites, the strength varies from 17.11 MPa to 21.54 MPa for hemp and flax fibers and 15.83 MPa to 18.79 MPa for noil fibers. A similar trend was observed in interlaminar shear properties in both cases. From moisture analysis, the rate of absorption is increased with time up to 144 h and remains constant in both cases. The moisture gain was observed more in individual composites than hybrid composites in both cases. Hence, the impact of hybridization was observed clearly in both cases. Also, hybrid composites showed improved properties compared to individual fiber composites.