SynopsisIn order to obtain information on the binding forces involved in the formation of the complex proflavine-DNA by the stronger process I, the stability of the complexes was investigated in the presence of various organic solvents, methanol, ethanol, n-propanol, isopropanol, formamide, dimethyl sulfoxide, p-dioxane, glycerol, and ethylene glycol. Quantitative data on binding in terms of K l n and r were obtained by means of absorption and fluorescence spectra, as well as by a thermal denaturation technique.The effectiveness of the solvents increases with their hydrocarbon content, but can hardly be related to their dielectric constant. The complex formation is effectively suppressed by organic solvent concentrations, in which DNA still preserves its double-helical conformation. These results demonstrate the importance of hydrophobic forces in the formation of the complex proflavine-DNA in aqueous solution.The similarity in spectroscopic properties of proflavine bound to DNA by process I and the same dye dissolved in an organic solvent make it possible to interpret the observed red shift of the long-wavelength absorption peak as being due to the interaction of the dye molecules with the less polar environment.The same behavior was found for other dyes capable of intercalation like purified trypaflavine, phenosafranine and ethidium bromide. However, intercalation is not a necessary condition, as it was shown in the case of pinacyanol, which binds only a t the surface of DNA.All organic solvents used decrease the binding ability of the dye.