By generating high resolution two dimensional temperature images of electronic devices and linking heat dissipation to electrical current, the authors demonstrate that thermoreflectance measurements employing a charge-coupled device can provide a useful and nondestructive method for profiling current density in electronic devices. Here they apply this method to high power SiGe heterojunction bipolar transistors (HBTs) integrated in a commercial SiGe bipolar complementary metal-oxide-semiconductor platform, measuring the current carried by each subcell and quantifying current collapse under high-bias operation. They show that current hogging for a HBT with two emitter subcells can lead to one subcell carrying 81% of the total current.