In this work, high‐density lithium disilicate (LS2) vitreous systems were produced by melting and quenching under high pressure (7.7 GPa) following two distinct experimental routes. In the first case, LS2 glass was remelted at 7.7 GPa and 1600°C and, then, quenched. In the second case, a stoichiometric mixture of precursor oxides (Li2O and SiO2) was melted at 1600°C and 7.7 GPa before quenching. A reference LS2 glass sample was produced at atmospheric pressure using conventional melting and quenching procedure. The samples were characterized by X‐ray diffraction, differential thermal analysis, and instrumented ultramicro hardness measurements. X‐ray diffraction confirmed that all samples were amorphous and thermal analysis suggests that different glassy structures were produced depending on the route of synthesis. Hardness and elastic modulus of the glasses produced under high pressure were higher than those of the reference glass, reflecting the irreversible densification effect induced by the high‐pressure processing.