The paper deals with analytical models of the elastic energy gradient W sq representing an energy barrier. The energy barrier is a surface integral of the elastic energy density w q . The elastic energy density is induced by thermal stresses acting in an isotropic spherical particle (q = p) with the radius R and in a cubic cell of an isotropic matrix (q = m). The spherical particle and the matrix are components of a multi-particle-matrix system representing a model system applicable to a real two-component material of a precipitation-matrix type. The multi-particle-matrix system thus consists of periodically distributed isotropic spherical particles and an isotropic infinite matrix. The infinite matrix is imaginarily divided into identical cubic cells with a central spherical particle in each of the cubic cells. The dimension d of the cubic cell then corresponds to an inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent microstructural characteristics of a real two-component material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural characteristics. The thermal stresses originate during a cooling process as a consequence of the difference α m − α p in thermal expansion coefficients between the matrix and the particle, α m and α p , respectively. The energy barrier W sq is used for the determination of the thermal-stress induced strengthening σ q . The strengthening represents resistance against compressive or tensile mechanical loading for α m − α p > 0 or α m − α p < 0, respectively.