Temperature is a key abiotic condition that limits the distributions of organisms, and forest insects are particularly sensitive to thermal extremes. Whereas winged adult insects generally are able to escape unfavorable temperatures, other less-vagile insects (e.g., larvae) must withstand local microclimatic conditions to survive. Here, we measured the thermal tolerance of the larvae of three saproxylic beetle species that are common inhabitants of coarse woody debris (CWD) in temperate forests of eastern North America: Lucanus elaphus Fabricius (Lucanidae), Dendroides canadensis Latreille (Pyrochroidae), and Odontotaenius disjunctus Illiger (Passalidae). We determined how their critical thermal maxima (CTmax) vary with body size (mass), and measured the thermal profiles of CWD representing the range of microhabitats occupied by these species. Average CTmax differed among the three species and increased with mass intraspecifically. However, mass was not a good predictor of thermal tolerance among species. Temperature ramp rate and time in captivity also influenced larval CTmax, but only for D. canadensis and L. elaphus respectively. Heating profiles within relatively dry CWD sometimes exceeded the CTmax of the beetle larvae, and deeper portions of CWD were generally cooler. Interspecific differences in CTmax were not fully explained by microhabitat association, but the results suggest that the distribution of some species within a forest can be affected by local thermal extremes. Understanding the responses of saproxylic beetle larvae to warming habitats will help predict shifts in community structure and ecosystem functioning in light of climate change and increasing habitat fragmentation.